Министерство образования и науки Самарской области Юго-западное управление министерства образования и науки Самарской области государственное бюджетное общеобразовательное учреждение Самарской области средняя общеобразовательная школа №13 городского округа Чапаевск Самарской области

Утверждено Директор школы /Воронкова В.К./ Приказ N044/2 -од от «14» июня 2023 г.

Рассмотрено на заседании методического объединения протокол № 5 от «14» июня 2023 г.

Дополнительная общеобразовательная общеразвивающая программа технической направленности «Робототехника»

реализуется с использованием оборудования Центра образования цифрового и гуманитарного профилей «Точка Роста»

Возраст детей 11-13 лет Срок обучения – 1 год

Разработчик: Исмайлов Э.Э., педагог дополнительного образования

Краткая аннотация

Дополнительная общеобразовательная общеразвивающая программа технической направленности «Робототехника» реализуется с использованием оборудования Центра образования цифрового и гуманитарного профилей «Точка Роста» и включает в себя 4 тематических модуля. Программа позволяет успешно решать задачи по формированию у детей умений и навыковконструирования.

Данная программа разработана с учётом интересов конкретной целевой аудитории, обучающихся среднего школьного возраста. Содержание программы направлено на привлечение обучающихся к современным технологиям конструирования, программирования и использования роботизированных устройств.

Пояснительная записка

Направленность дополнительной общеразвивающей программы «Робототехника» техническая.

Актуальность программы. Робототехника является перспективной областью для применения образовательных методик в процессе обучения за счет объединения в себе различных инженерных и естественнонаучных дисциплин. В ходе реализации Программы обучающихся множества учебных используются знания ИЗ дисциплин. Ha занятиях предполагается использование образовательных конструкторов Lego Mindstorms позволяющих заниматься с обучающимися конструированием, программированием, моделированием. Кроме того, обучение по данной программе способствует развитию творческой деятельности, конструкторско-технологического мышления детей, приобщает их к конструкторских, художественно-конструкторских решению И технологических задач.

Новизна данной дополнительной образовательной программы заключается в том, что по форме организации образовательного процесса онаявляется модульной и построена с упором на практику, т. е. сборку моделей на каждом занятии.

Отличительной особенностью программы заключаются в создании условий, благодаря которым во время занятий ребята научаться проектировать, создавать и программировать роботов. Командная работа над практическими заданиями способствует глубокому изучению составляющих современных роботов, а визуальная программная среда позволит легко и эффективно изучить алгоритмизацию и программирование.

Педагогическая целесообразность заключается в том, что занятия робототехникой дают сильный стимул к развитию обучающихся, формированию интеллекта, наблюдательности, умения анализировать, рассуждать, доказывать, проявлять творческий подход в решении поставленной задачи. У детей воспитываются ответственность за порученное дело, аккуратность, взаимовыручка. В программу включены коллективные практические занятия, развивающие коммуникативные навыки и способность работать в команде. Практические занятия помогают развивать у детей воображение, внимание, творческое мышление, умение свободно выражать свои чувства и настроения, работать в коллективе.

Цель программы: введение в начальное инженернотехническое конструирование и основы робототехники с использованием робототехнического образовательного конструктора Lego Mindstorms на базе компьютерного контроллера NXT.

Задачи образовательного курса:

- ознакомить с конструктивным и аппаратным обеспечением; контроллером робота и их функциями;
 - дать первоначальные знания о конструкции

робототехнических устройств;

- научить приемам сборки и программирования с использованием робототехнического образовательного конструктора Lego Mindstorms на базе компьютерного контроллера NXT;
 - обучить проектированию, сборке и программированию устройства;
- способствовать формированию творческого отношения к
 выполняемой работе;
- воспитывать умение работать в коллективе,
 эффективно распределять обязанности;
 - развивать творческую инициативу и самостоятельность;
- развивать психофизиологические качества обучающихся:
 память, внимание, способность логически мыслить, анализировать,
 концентрировать внимание на главном;
- развивать умения излагать мысли в четкой логической последовательности, отстаивать свою точку зрения, анализировать ситуацию и самостоятельно находить ответы на вопросы путем логических рассуждений.

Возраст детей, участвующих в реализации данной дополнительной образовательной программы: 11-13 лет.

Сроки реализации программы: 1 год, 108 часов (4 модуля)

Формы обучения: занятие, практическая работа, защита проектов.

Форма занятий – групповая, индивидуальная.

Режим занятий программа реализуется 2 раза в неделю по 1,5 часа.

Наполняемость групп: 15-20 человек

Планируемые результаты

Личностные результаты

К личностным результатам освоения курса можно отнести: -критическое отношение к информации и избирательность её восприятия;

- осмысление мотивов своих действий при выполнении заданий;
- –развитие любознательности, сообразительности при выполнении
 разнообразных заданий проблемного и эвристического характера;
- -развитие внимательности, настойчивости, целеустремленности, умения преодолевать трудности;
- развитие самостоятельности суждений, независимости и нестандартности мышления;
- воспитание чувства справедливости, ответственности;
- -начало профессионального самоопределения, ознакомление с миром профессий, связанных с робототехникой.

Метапредметные результаты

Регулятивные универсальные учебные действия:

- принимать и сохранять учебную задачу;
- планировать последовательность шагов алгоритма для достижения цели;
- -формировать умения ставить цель, планировать достижение этой цели;
- -осуществлять итоговый и пошаговый контроль по результату;
- -адекватно воспринимать оценку учителя;
- различать способ и результат действия;
- -вносить коррективы в действия в случае расхождения результата решения задачи на основе ее оценки и учета характера сделанных ошибок, в сотрудничестве с учителем ставить новые учебные задачи;
- -проявлять познавательную инициативу в учебном сотрудничестве;
- -осваивать способы решения проблем творческого характера в жизненных ситуациях;
- –оценивать получающийся творческий продукт и соотносить его с изначальным замыслом, выполнять по необходимости коррекции либо продукта, либо замысла.

Познавательные универсальные учебные действия:

- осуществлять поиск информации в индивидуальных информационных архивах учащегося, информационной среде образовательного учреждения, в федеральных хранилищах информационных образовательных ресурсов;
- использовать средства информационных и коммуникационных технологий для решения коммуникативных, познавательных и творческих задач;
- ориентироваться на разнообразие способов решения задач;
- осуществлять анализ объектов с выделением существенных и несущественных признаков;
- проводить сравнение, классификацию по заданным критериям;
- строить логические рассуждения в форме связи простых суждений об объекте;
- устанавливать аналогии, причинно-следственные связи;
- моделировать, преобразовывать объект из чувственной формы в модель,
 где выделены существенные характеристики объекта (пространственно-графическая или знаково-символическая);
- -синтезировать, составлять целое из частей, в том числе самостоятельное достраивание с восполнением недостающих компонентов;
- выбирать основания и критерии для сравнения, классификации объектов.

Коммуникативные:

- учитывать разные мнения и интересы и обосновывать свою позицию;
- приходить к общему решению в совместной работе (сотрудничать с одноклассниками);
- сотрудничать со взрослыми и сверстниками в разных социальных ситуациях;
- не создавать конфликтов и находить выходы из спорных ситуаций

Предметные результаты.

Модульный принцип построения программы предполагает описание

предметных результатов в каждом конкретном модуле.

Учебный план

№ п/п	Наименование модуля	К	СОВ	
		Всего	Теория	Практика
1.	Конструирование.	30	10	20
2.	Программирование в среде Lego Mindstorms NXT.	24	6	18
3.	Задачи, выполняемые роботом.	33	8	25
4.	Проектная деятельность учащихся.	21	6	15
	Итого	108	30	78

Модуль 1. «Конструирование»

Цель: развитие начальных навыков конструирования и программирования с помощью образовательного конструктора.

Задачи:

Обучающие:

- формирование знаний о деталях конструктора и способах их крепления, изучение принципа работы электромоторов;
- актуализация знаний о сборке различных механизмов и конструкций.

Развивающие:

- развитие умений построения механических передач с помощью учебного набора конструктора;
- приобретение навыков создания двух(четырех)моторных тележек с дальнейшим программированием.

Воспитательные:

- воспитывать чувство бережного отношения к используемому оборудованию;
- формирование уважения к педагогу и свертникам.

Предметные ожидаемые результаты:

Обучающийся должен знать:

- определение понятий: робототехника, информатика, механическая передача, мотор, датчик;
- связь робототехники с такими предметами как: информатика, математика, физика.

Обучающийся должен уметь:

- строить одномоторные тележки, строить простые используя среду программирования контроллера;
- строить понижающие и повышающие механические передачи с различным диапазоном передаточного отношения.

Обучающийся должен приобрести навык:

- работы в программе Lego mindstorms;
- начального построения алгоритмов.

Учебно-тематический план модуля «Конструирование»

No॒	Название раздела, темы	Кол	Количество часов		Формы
Π/Π	модуль	Всего	Теори	Практик	обучения/аттестации/
			Я	a	контроля
1.	Правила техники безопасности.	2	1	1	Педагогические наблюдения, постановка проблемы, тематические состязания.
2.	Информатика, , робототехника.	3	1	2	-//-
3.	Детали конструктора.	2	1	1	-//-

	Способы крепления деталей.				
4.	Механическая передача.	6	2	4	-//-
	Передаточное отношение.				
	Редуктор и мультипликатор.				
5.	Моторы. Одномоторная	5	1	4	-//-
	тележка.				
	Полноприводная тележка.				
6.	Четырехколесная тележка с	6	2	4	-//-
	приводом.				
7.	Программирование с	3	1	2	-//-
	использованием среды				
	контроллера Lego Mindstorms				
	NXT				
8.	Моделирование. Lego	3	1	2	-//-
	Mindstorms NXT.				
	ИТОГО	30	10	20	

Содержание программы модуля

Модуль 1. «Конструирование»

Тема 1.

Теория: Понятия: Правила ТБ.

Практика: ознакомление с правилами техники безопасности при работе с конструкторами LEGO. Прохождение инструктажа по ТБ.

Тема 2.

Теория: Понятия: информатика, кибернетика, робототехника.

Практика: формирование знаний о дисциплинах: информатика, кибернетика, робототехника. Выделение между ними взаимосвязи. Изучение основоположников данных наук.

Тема 3.

Теория: Понятия: соединительный штифт, ось, рама.

Практика: Освоение навыков соединения деталей образовательного конструктора Lego. Игры: космический корабль, транспорт будущего.

Тема 4.

Теория: Понятия: механическая передача, редуктор, мультипликатор.

Практика: сборка конструкций с использованием редуктора и мультипликатора. Игры: волчок, редуктор.

Тема 5.

Теория: Понятия: электромотор, обороты, мощность, механическая энергия.

Практика: Сборка одномоторной тележки.

Тема 6.

Теория: Понятия: электромотор, поворот.

Практика: Сборка простой тележки. Освоение навыков использования понижающей (повышающей) передачи в конструкции четырехмоторной тележки.

Тема 7.

Теория: Понятия: Программа, Lego Mindstorms NXT.

Практика: Сборка робота с последующим программированием без использования компьютера. Гонки тележек.

Тема 8.

Теория: Понятия: Lego Mindstorms NXT.

Практика: Обучение работе в редакторе Lego Mindstorms NXT, приобретение навыков использования функций и инструментов программы.

Модуль 2. «Программирование в среде Lego Mindstorms NXT»

Цель: развитие и формирование навыков программирования и создания алгоритмов.

Задачи:

Обучающие:

- приобретение знаний об алгоритмах и функциях контроллера Lego Mindstorms NXT;
- формирование знаний о принципе работы электродвигателя.

Развивающие:

- развитие умений в области программирования и создания программ для роботов;
- формирование навыков использования различных блоков ПО Lego Mindstorms NXT.

Воспитательные:

- воспитание компьютерной грамотности;
- формирование знаний о первооткрывателях науки «Робототехники».

Предметные ожидаемые результаты:

Обучающийся должен знать:

- определение понятий: алгоритм, виды алгоритмов;
- свойства алгоритмов и способы их построения;
- функции и принцип работы датчиков.

Обучающийся должен уметь:

- строить программы с использованием блоков: цикл, переключатель, переменные.
- работать с датчиками и правильно выбирать область их применения.

Обучающийся должен приобрести навык:

- правильного применения задержек и таймингов;
- калибровки и настройки датчиков.

Учебно-тематический план модуля «Программирование в среде Lego Mindstorms NXT»

1.	Алгоритм. Виды	2	1	1	Тестирование,
	алгоритмов. Свойства				педагогические
	алгоритмов.				наблюдения, опрос.
2.	Знакомство со средой	3	1	2	-//-
	Lego Mindstorms NXT.				
	Интерфейс, функции и				
	инструменты.				
3.	Блок Lego Mindstorms	3	1	2	-//-
	NXT. Новая программа.				
	Блоки: цикл,				
	переключатель,				
	переменные.				
4.	Управление моторами.	6	1	5	-//-
	Состояние моторов.				
	Синхронизация.				
5.	Понятие «датчик». Виды,	7	1	6	-//-
	функции датчиков.				
	Настройка датчиков.				
6.	Дополнительные	3	1	2	-//-
	функции. Тайминги и				
	задержки. Звуки и				
	изображения.				

ИТОГО	24	6	18	8
			i	

Содержание программы модуля

Модуль 2. «Программирование в среде Lego Mindstorms NXT»

Тема 1.

Теория: Понятия: алгоритм, виды алгоритмов.

Практика: Формирование знаний о свойствах алгоритма. Изучение сфер применения алгоритмов и их связи с робототехникой. Составление словесных алгоритмов.

Тема 2.

Теория: Понятия: среда программирования Lego Mindstorms NXT, языки программирования.

Практика: приобретение навыков работы в программе Lego Mindstorms NXT, использование инструментов программы для дальнейшего использования на занятиях.

Тема 3.

Теория: Понятия: Программа, цикл, переменная, повтор программы.

Практика: Создание новой программы в среде Lego Mindstorms NXT, формирование навыков создания повторяющихся программ с использованием разных переменных и переключателей, загрузка программ в контроллер и их запуск.

Тема 4.

Теория: Понятия: состояние моторов, оборот, градус, время.

Практика: Освоение знаний о режимах работы мотора, подключаемых портах. Приобретение навыков программного управления моторами. Калибровка моторов.

Тема 5.

Теория: Понятия: Датчик, машинное зрение, ультразвуковой датчик, инфракрасный датчик, датчик цвета, гироскоп, кнопка.

Практика: Изучение принципа работы датчиков Lego Mindstorms NXT, показаний датчиков, единиц измерения. Практические опыты с датчиками. Игра: измерь расстояние.

Тема 6.

Теория: Понятия: задержка, тайминг, единицы измерения времени, звук.

Практика: приобретение навыков создания программ с использование задержки. Создание собственных звуков и изображений в среде Lego Mindstorms NXT. Игра: сломанный телефон.

Модуль 3. Задачи, выполняемые роботом

Цель: подготовка обучающихся к соревновательной деятельности в направлении «Образовательная робототехника.

Задачи:

<u>Обучающие:</u>

- формирование знаний об основных направлениях соревновательной деятельности образовательной робототехники;
- привитие понимания соблюдения и выполнения регламентов соревнований.

Развивающие:

- развитие умений самостоятельного создания роботов для выполнения определенных задач;
- формирование навыков «продвинутого» программирования с использованием различных датчиков и их комбинаций.

Воспитательные:

- формирование моральных ценностей (честность, порядочность);
- привитие уважительного отношения к соперникам и развитие «здорового» соперничества.

Предметные ожидаемые результаты:

Обучающийся должен знать:

- определение понятий: траектория, мощность, обороты, градусы;
- отличие релейного регулятора от пропорционального;
- регламенты и правила робототехнических соревнований.

Обучающийся должен уметь:

- конструировать роботов в зависимости от предлагаемого задания и цели (робот для кегель-ринга, робот для сумо и т.д.);
- использовать пульт дистанционного управления для объезда препятствий.

Обучающийся должен приобрести навык:

- целостного построения робота с последующей разработкой для него программы;
- командной и коллективной работы.

Учебно-тематический план модуля «Задачи, выполняемые роботом»

1.	Движение робота по	3	1	2	Педагогические
	заданным траекториям.				наблюдения, опрос,

	Квадрат, трапеция.				тематические состязания за рамками учебного заведения, технический диктант.
2.	Конструирование и программирование робота.	6	1	5	-//-
3.	Использование датчиков	6	1	5	-//-
4.	Движение по линии.	9	3	6	-//-
5.	Датчик поворота мотора.	6	1	5	-//-
6.	Объезд препятствий.	3	1	2	-//-
	ИТОГО	33	8	25	

Содержание программы модуля

Модуль 3. Задачи, выполняемые роботом

Тема 1.

Теория: Понятия: траектория, движение.

Практика: Конструирование робота и создание для него алгоритма движения по различным траекториям (квадрат, трапеция). Состязание «Кто быстрее?».

Тема 2.

Теория: Понятия: Конструирование и программирование робота..

Практика: Конструирование робота. Приобретение навыков создания программ для состязаний. Учебно-тематическое соревнование на время.

Тема 3.

Теория: Понятия: Датчики разного уровня.

Практика: Конструирование робота для состязаний. Приобретение навыков создания программ для состязаний. Учебно-тематическое соревнование.

Тема 4.

Теория: Понятия: Движение по линии.

Практика: Конструирование робота для движения по черной непрерывистой линии. Приобретение навыков создания программ для состязаний. Учебно-тематическое соревнование «Шорт-трек».

Тема 5.

Теория: Понятия: Датчик поворота мотора.

Практика: Конструирование робота для состязаний. Приобретение навыков создания программ для состязания. Освоение способов построения поворотных механизмов с использование «среднего» мотора. Учебнотематическое соревнование.

Тема 6.

Теория: Понятия: Препятствия

Практика: формирование навыков управления роботом. Приобретение умений по созданию оптимальных программ для извилистой траектории движения робота.

Модуль 4. Проектная деятельность учащихся

Цель: закрепление навыков создания собственных проектов с последующей демонстрацией и защитой.

Задачи:

Обучающие:

- формирование знаний о понятиях «проект» и «исследование»;
- актуализация знаний о выступлениях перед аудиторией.

Развивающие:

- формирование умений постановки целей и задач создаваемых проектов и командной работы учащихся;
- развитие коммуникативных навыков и навыков выступления перед аудиторией.

Воспитательные:

- воспитание уважения к чужому труду;
- развитие коммуникативных навыков и культуры общения в малых группах.

Предметные ожидаемые результаты:

Обучающийся должен знать:

- определение понятий: творческий проект, план;
- правила построения стратегии, целей и задач разрабатываемого проекта или исследования.

Обучающийся должен уметь:

- работать в коллективе;
- распределять обязанности внутри коллектива;
- работать в программах необходимых для создания проектов.

Обучающийся должен приобрести навык:

- выступления перед аудиторией;
- уметь анализировать ситуацию и быстро находить ответы на поставленные вопросы;

- правильно демонстрировать свои разработки и проекты.

Учебно-тематический план модуля «Проектная деятельность учащихся»

1.	Выбор и утверждение	3	2	1	Защита творческих
	темы творческого				работ, самоанализ,
	проекта.				рейтинг обучающихся.
2.	План работы. Работа над	9	1	8	-//-
	проектом.				
3.	Устранение недочетов,	6	2	4	-//-
	ошибок. Внесение				
	исправлений.				
4.	Демонстрация и	3	1	2	-//-
	представление				
	творческих проектов.				
	ИТОГО	21	6	15	

Содержание программы модуля

Модуль 4. Проектная деятельность учащихся

Тема 1.

Теория: Понятия: проект, цели и задачи проекта.

Практика: Формирование навыков командной творческой работы и проблемного мышления. Формулирование темы проекта с самооценкой.

Тема 2.

Теория: Понятия: план действий, планирование времени.

Практика: Самостоятельная работа учащихся с педагогическими консультациями. Закрепление навыков работы в команде.

Тема 3.

Теория: Понятия: самокритика, недочеты, программная ошибка, конструкционная ошибка.

Практика: Консультация с педагогом. Самоанализ. Приобретение навыков оценки собственной деятельности.

Тема 4.

Теория: Понятия: демонстрация, функции защиты проектов.

Практика: Формирование навыков выступления перед аудиторией. Развитие дикции и ораторских качеств. Приобретение навыка по сжатию информации. Защита проектов. Рейтинг учащихся.

Обеспечение дополнительной общеобразовательной программы Методическое обеспечение

Основным методом обучения в данном курсе является *метод проектов*. Проектная деятельность в образовательной робототехнике позволяет развить конструкторские, инженерные и творческие способности учащихся. Роль педагога состоит в кратком по времени объяснении нового материала и постановке задачи, а затем консультировании учащихся в процессе конструирования и программирования.

Разработка каждого проекта реализуется в форме выполнения практической работы по сборке конструкции, программирования на компьютере с последующим представлением и защитой на творческих и интеллектуальных конкурсах и соревнованиях разного уровня.

Методы обучения

Познавательный (восприятие, осмысление и запоминание обучающимися нового материала с привлечением наблюдения готовых

примеров, моделирования, изучения иллюстраций, восприятия, анализа и обобщения демонстрируемых материалов);

Метод проектов (при усвоении и творческом применении навыков и умений в процессе разработки собственных моделей);

Метод проблемного обучения (используется для постановки проблемы перед обучающимися с целью нахождения наиболее рационального способа ее решения);

Групповая работа (используется при совместной сборке моделей, а также при разработке проектов).

Применяемые дидактические принципы

- принцип связи теории с практикой;
- принцип последовательности, систематичности;
- принцип наглядности;
- принцип активности обучаемых.

Материально-техническое оснащение программы

Для проведения теоретических занятий необходимы:

- Кабинет «Точка роста»;
- персональный компьютер;
- доска.

Для практических занятий необходимы:

- Образовательные робототехнические наборы «Lego Mindstorms»
- Персональные компьютеры.
- Поля для робототехники.
- Набор запасных деталей и датчиков.
- Программное обеспечение: Scratch for Windows, Lego Mindstorms NXT.

Критерии оценки знаний, умений и навыков при освоении программы

Для того чтобы оценить усвоение программы, в течение года используются следующие методы диагностики: собеседование, наблюдение, анкетирование, выполнение отдельных творческих заданий, тестирование, участие в конкурсах, викторинах.

<u>Уровень освоения программы ниже среднего</u> – ребёнок овладел менее чем 50% предусмотренных знаний, умений и навыков, испытывает серьёзные затруднения при работе с учебным материалом; в состоянии выполнять лишь простейшие практические задания педагога.

<u>Средний уровень освоения программы</u> – объём усвоенных знаний, приобретённых умений и навыков составляет 50-70%; работает с учебным материалом с помощью педагога; в основном, выполняет задания на основе образца; удовлетворительно владеет теоретической информацией по темам курса, умеет пользоваться литературой.

Уровень освоения программы выше среднего — учащийся овладел на 70-100% предусмотренным программой учебным планом; работает с учебными материалами самостоятельно, не испытывает особых трудностей; выполняет практические задания с элементами творчества; свободно владеет теоретической информацией по курсу, умеет анализировать литературные источники, применять полученную информацию на практике.

Список литературы

- 1. Овсяницкая, Л.Ю. Курс программирования робота [Текст] / Л.Ю. Овсяницкая, Д.Н. Овсяницкий, О.Д. Овсяницкий. М.: Издательство «Перо», 2016. 300 с. [МО1]
- 2. Филиппов, С.А. Робототехника для детей и родителей [Текст] / С.А. Филиппов. СПб.: Наука, 2015. 319 с. [МО2]

- 3. Копосов, Д.Г. Первый шаг в робототехнику. Практикум для 5-6 классов, рабочая тетрадь для 5-6 классов [Текст] / Д.Г. Копосов. Изд.: БИНОМ. Лаборатория знаний, 2016. 120 с. [МОЗ]
- 4. Овсяницкая, Л.Ю. Пропорциональное управление роботом Lego Mindstorms EV3 [Текст] / Л.Ю. Овсяницкая, Д.Н. Овсяницкий, О.Д. Овсяницкий. М.: Издательство «Перо», 2015. 186 с. [МО4]
- 5. Вязовов, С.М. Соревновательная робототехника: приемы программирования: учебно-практическое пособие [Текст] / С.М. Вязовов, О.Ю. Калягина, К.А. Слезин. М.: Издательство «Перо», 2016. 120 с. [МО5]
- 6. Овсяницкая, Л.Ю. Алгоритмы и программы движения по линии [Текст] / Л.Ю. Овсяницкая, Д.Н. Овсяницкий, О.Д. Овсяницкий. М.: Издательство «Перо», 2015. 186 с. [МО6]
- 7. Конасова Н.Ю. Оценка результатов дополнительного образования детей [Текст] / Н.Ю. Конасова. М.: Учитель, 2019. 118 с. [МО7]
- 8. Малыхина Л.Б. Справочник педагога дополнительного образования [Текст] / Л.Б. Малыхина – М.: Учитель, 2019. – 239 с. [MO8]
- 9. Матяш, Н. В. Инновационные педагогические технологии. Проектное обучение [Текст] / Н. В. Матяш. М.: Академия, 2015. 158 с. [МО9]
- 10. Ашанина Е.Н. Современные образовательные технологии [Текст] / Е. Ашанина под ред., Васина О.В. под ред., Ежов. М.: Либерея, 2018. 165 с. [МО10]